Home Extractions of Hemp and CBD Yields

MACERATION COMPARED TO PERCOLATION

Lecture Map

Intro

Maceration

Contraction in the second

Extractions

Percolation

Maceration Time Supporting Evidence

Disclosures

I have been a Natural Products, Pharma and *Cannabis* Industry Consultant, for SOPs, GMPs, Regulatory Issues, Pharmacology, Research Initiatives and Formulation

Contents lists available at ScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

journal homepage: www.elsevier.com/locate/jpba

Comparison of alkylamide yield in ethanolic extracts prepared from fresh versus dry *Echinacea purpurea* utilizing HPLC–ESI-MS

Kevin Spelman, Matthew H. Wetschler, Nadja B. Cech*

Department of Chemistry and Biochemistry, The University of North Carolina Greensboro, P.O. Box 26170, Greensboro, NC 27402, United States

ARTICLE INFO

Article history;

Received 13 November 2008 Received in revised form 30 January 2009 Accepted 10 February 2009 Available online 20 February 2009

Keywords: HPLC-ESI-MS Electrospray Echinacea

ABSTRACT

Echinacea purpurea (L.) Moench, a top selling botanical medicine, is currently of considerable interest due to immunomodulatory, anti-inflammatory, antiviral and cannabinoid receptor 2 (CB2) binding activities of its alkylamide constituents. The purpose of these studies was to comprehensively profile the alky-lamide (alkamide) content of *E. purpurea* root, and to compare yields of alkylamide constituents resulting from various ethanolic extraction procedures commonly employed by the dietary supplements industry. To accomplish this goal, a high performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–ESI-MS) method was validated for quantitative analysis of several *E. purpurea* alkylamides. Using this method, at least 15 alkylamides were identified and it was shown that fresh and dry *E. purpurea* extracts prepared from equivalent amounts (dry weight) of roots, with exceptions, exhibited similar yield of specific alkylamides. However, the amount of total dissolved solids in the dry extract

PHARMACEDTICAL AND BIOPIEDICAL ANALYSIS

Echinacea purpurea

Relative Concentration of Dodeca-tet

Spelman et al., Comparison of alkylamide yield in ethanolic extracts prepared from fresh versus dry Echinacea purpurea utilizing HPLC–ESI-MSJPBA 49 (2009) 1141–1149

Maceration Time

HOW LONG IS NECESSARY FROM A CHEMISTRY PERSPECTIVE?

Hydroethanolic Tincture

% EtOH	THCA	THC
20%	90%	10%
40%	72%	28%
80%	54%	46%

Politi M, Peschel W, Wilson N, Zloh M, Prieto JM, Heinrich M. Direct NMR analysis of cannabis water extracts and tinctures and semi-quantitative data on delta9-THC and delta9-THC-acid. Phytochemistry. 2008 Jan;69(2):562-70.

Applying Maceration Time Studies to Cannabis

Extraction Flow Chart

Extraction Flow Chart

Marc pressed to collect secondary menstruum

Triplicate samples collected of each menstruum

Each sample analyzed in triplicate

Milled Cannabis Flower Potency Characterization

Biomass Sample	Result
Rep 1	9.36%
Rep 2	8.27%
Rep 3	8.90%
Mean	8.84
STD Deviation	0.55
% RSD	6.19 %
p value	< 0.002

Typical Home Extraction

EJWOX 0.53 Gallon Stainless Steel Soft Fruit Wine Juice Press Cheese Making Press Tincture Press Herbal Press

Cannabidiol (CBD) 2-[(1R,6R)-6-isopropenyl-3-methyl-cyclohex-3-en-1-yl]-5-pentyl-benzene-1,3-diolate

CBD in Liquor

Drain vs Press CBD Potency (%)

Drain Press

CBD Remaining in Marc

Are These Results Supported with Other Data?

One hr vs. 8 hr

Senna spp.

 No significant difference in macerations of seed between the 1 hr and 8 hr time points for the yield of chrysophanol

Chen Q, Fung KY, Lau YT, Ng KM, Lau DTW. Relationship between maceration and extraction yield in the production of Chinese herbal medicine. *Food Bioprod Process* 2016;98:236-243.

One hr vs. 12 hr

Salvia miltiorrhiza

No significant difference between 1 hr and 12 h maceration for the yield of salvianic acid A in extracts of in both cut and sift herb and powder

forms

Chen Q, Fung KY, Lau YT, Ng KM, Lau DTW. Relationship between maceration and extraction yield in the production of Chinese herbal medicine. *Food Bioprod Process* 2016;98:236-243.

0.5 hr vs. 8 hr

Lonicera spp. (honeysuckle)
30 minute extraction was no different than an 8 hr extraction for chlorogenic acid yield

Chen Q, Fung KY, Lau YT, Ng KM, Lau DTW. Relationship between maceration and extraction yield in the production of Chinese herbal medicine. *Food Bioprod Process* 2016;98:236-243.

Research Article

OMICS International

Extraction and HPLC Analysis of Sage (Salvia officinalis) Plant

Fatma Ebru K', Ayse A and Caglar K

Aksuvital R and D Center, Kavakli Mah, Kuzey Cad, Beylikdüzü, İstanbul, Turkey

*Corresponding author: Fatma Ebru K, Aksuvital R and D Center, Kavakli Mah, Kuzey Cad, Beylikdüzü, İstanbul, Turkey, Tel: +90 212 671 55 47; E-mail: e.koc@aksuvital.com.tr

Received: October 05, 2017; Accepted: October 16, 2017; Published: October 20, 2017

Copyright: © 2017 Fatma Ebru K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In this study, the sage (Salvia officinalis) plant collected from the Mediterranean region was extracted with different solvents and methods. The extract yields were compared. The quantities of rosmarinic acid, carnosic acid and carnosol, which are responsible for the antioxidant capacity of the sage plant, were analyzed qualitatively and quantitatively by an HPLC.

Ground sage plant were sieved with 70 mesh sieves. Maceration were done for powder sage plant at 45°C with 70% ethyl alcohol in "1:6" (w/v) ratio at different time (3; 6; 8; 10 hours); 100% methanol and 100% ethanol extractions; Soxhlet extraction efficiencies were compared. The proportions of rosmarinic acid and the amounts of carnosic acid and carnosol were analyzed in the extracted at UV detector and 280 nm wavelength by a Thermo Scientific Ulimate HPLC instrument. As a result of the experiments, a maceration method with 70% ethanol with 25%

Carnosol

Carnosic acid

Figure 1: Change of extract yield (%) for maceration.

Figure 4: Change of "Carnosol+Carnosic acid" (mg/g ext.) for maceration method.

Percolation vs Maceration

Extraction and Other Downstream Procedures for Evaluation of Herbal Drugs in *Quality Control and Evaluation of Herbal Drugs Evaluation Natural Products and Traditional Medicine*. 2019 p195-236.

A Percolation Cone Disguised as a Bottle of Water

 \sim

Moist but not Muddy

The Pack

Martin EW, Cook EF. Remington's Practice of Pharmacy. Mack Publishing Co. Easton, PA. 1961. p1866

Tools to Consider

Martin EW, Cook EF. Remington's Practice of Pharmacy. Mack Publishing Co. Easton, PA. 1961. p1866

CBD Recovery Efficiency (% Recovery) per Extraction Treatment

Treatment	Starting Solvent Mass (g)	Drain Liquor Mass (g)	Press Liquor Mass (g)	Total Liquor ⁄Iass (g)		Liquor Recover y %
Perc - 1	269.000	205.000	0.000	205.0	C	76.208
Perc - 2	269.000	199.502	0.000	199.50	2	74.164

CBD Recovery Efficiency (% Recovery) per Extraction Treatment

Treatment	Total Liquor CBD Recovery (%)	Drain CBD Recovery (%)	Press CBD Recovery (%)
Perc -	79.277	79.277	0.000
Perc - 2	80.925	80.925	0.000

Macerations Vs. Percolation

Are These Results Supported with Other Data?

Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2022, Article ID 9679739, 9 pages https://doi.org/10.1155/2022/9679739

Research Article

In Vitro Inhibitory and Proliferative Cellular Effects of Different Extracts of Struthanthus quercicola: A Preliminary Study

Luz Eugenia Alcántara-Quintana,¹ Carely Arjona-Ruiz,² Denisse de Loera,² Rubí Gamboa-León,³ and Yolanda Terán-Figueroa ⁶

Struthanthus quercicola: Total Phenolic Extraction

Alcántara-Quintana LE, *et al.* In Vitro Inhibitory and Proliferative Cellular Effects of Different Extracts of *Struthanthus quercicola*: A Preliminary Study. *Evid Based Complement Alternat Med.* 2022 Apr 13;2022:9679739.

Struthanthus quercicola: Total Flavonoid Extraction

Alcántara-Quintana LE, *et al.* In Vitro Inhibitory and Proliferative Cellular Effects of Different Extracts of *Struthanthus quercicola*: A Preliminary Study. *Evid Based Complement Alternat Med.* 2022 Apr 13;2022:9679739.

Future Directions

- Quick wash comparison to short maceration
- Percent Ethanol
 - 70% vs 100%
 - Fresh plant vs Dry plant
- Hot EtOH vs Cold EtOH vs RT EtOH
 - In Percolation
 - In Maceration
 - In Quick Wash

Acknowledgements

- Research Team
- Jason Wilson, MS Chemical AnalysisFrom U Miss
- Travis Simpson, BS Extraction
 - From Bastyr University

Thank You for your attention!

